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Abstract 
 
This paper discusses the conflicting published information on the use of conservation of linear 
momentum in motorcycle/automobile collisions. The proper methodology for both linear and 
angular momentum analyses in motorcycle collisions is reviewed and two case studies are 
included as examples of successful use of these techniques. The use of linear and angular 
momentum in collisions where significant weight disparities exist between the vehicles should 
always include a sensitivity analysis that evaluates the level of confidence of the speed estimates. 
Use of the sensitivity analysis will allow the reconstructionist to determine if the techniques 
should be applied to the given analysis or be abandoned in favor of other methods of speed 
analysis.
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Background 
 
For many years there has been some controversy over the use of conservation of linear 
momentum to estimate the speed of motorcycles involved in collisions with other motor vehicles. 
Fricke and Riley indicate in Topic 874 of the Traffic Accident Investigation Manual that 
“occasionally a momentum analysis is attempted” and that this technique “rarely… works 
well”  in accurately estimating the speed of the motorcycle. They go on to explain that the 
heading and departure angles become sensitive “when the angles of approach are nearly 
collinear and the weight difference between the colliding vehicles is fairly large.” 1    
 
In 1990, Brown and Obenski write that a momentum analysis “can sometimes be used in 
motorcycle accidents,” and give a graphical example of a momentum vector diagram of a 
motorcycle/automobile collision.2  In 1994, Obenski further clarifies this position by stating 
“Generally it is tricky to use momentum analysis in accidents between vehicles with a big 
weight difference,” but gives the same graphical example as in his previous work. Obenski 
specifically cautions against using a momentum analysis where the automobile has been moved 
very little after impact with the motorcycle.3          
 
In 1990, Niederer wrote about techniques that may be used to reconstruct motorcycle/vehicle 
collisions, with the emphasis of the paper on the use of conservation of linear and angular 
momentum. Niederer specifically cautions that “due to the often unfavourable mass ratio an 
accurate reconstruction may be impeded,” but concludes that when used cautiously, the use of 
momentum and other available information “represents a powerful tool for motorcycle-vehicle 
collision reconstruction.” He further concludes that the reconstructionist should assess the 
sensitivity of the momentum analysis to changes in variation of impact configuration and post-
impact trajectory. 4     
 

Conservation of Linear Momentum 
 
The Law of Conservation of Momentum dictates that the total momentum just prior to two 
vehicles colliding is the same as the total momentum just after the collision.  
 

Equation 1 

Explanation  A typical mathematical representation of two passenger vehicles that collide. 

Formula  42312211 VMVMVMVM
vvvv

+=+  

Where  

M1 Mass of vehicle 1 V1 Velocity of vehicle 1 at impact 

M2 Mass of vehicle 2 V2 Velocity of vehicle 2 at impact 

  V3 Velocity of vehicle 1 after impact 

  V4 Velocity of vehicle 2 after impact 
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In most motorcycle collisions this basic formula must be expanded to include both motorcycle 
and rider post-impact trajectory, since the motorcycle and rider seldom stay together following 
the collision.  
 

Equation 2 

Explanation  A typical representation of a motorcycle/vehicle impact, where the motorcycle 
and rider have different post-impact trajectories. 

Formula  53423123211 )( VMVMVMVMMVM
vvvvv

++=++  

Where  

M1 Mass of vehicle 1 V1 Velocity of vehicle 1 at impact 

M2 Mass of motorcycle V2 Velocity of motorcycle/rider at impact 

M3 Mass of rider V3 Velocity of vehicle 1 after impact 

  V4 Velocity of motorcycle after impact 

  V5 Velocity of rider after impact 

 
Since momentum is a vector quantity, Equations 1 and 2 account for both the speed of the 
objects and the direction of travel. The following formulae can be used to solve for the speed of 
vehicle 1 and vehicle 2 when the initial direction of travel of vehicle 1 is determined to be zero 
degrees. 
 

Equation 3 

Note  Equations 3 and 4 must be solved in order, since Equation 4 requires the value 
of V2 from Equation 3 for solution. 

Formula  ψ
γφθ

SinMM

SinVMSinVMSinVM
V

)( 32

534231
2

+

++
=  

Where  

ψ Approach angle of motorcycle 

φ Departure angle of motorcycle 

γ Departure angle of rider 

θ Departure angle of vehicle 1 

 
Equation 4  

Formula  θψγφ
CosV

M

CosVMMCosVMCosVM
V 3

1

2325342
1

)(
+

+−+
=  

Where 

ψ Approach angle of motorcycle 

φ Departure angle of motorcycle 

γ Departure angle of rider 

θ Departure angle of vehicle 1 
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Photo 1 – Accident scene showing tire marks 

 
 

Photo 2 – Post impact positions of car and motorcyc le 

Example I 
 
A Suzuki motorcycle was traveling east 
on Route 66 when it collided with the 
right side of a BMW that was traveling 
south. Prior to striking the BMW, the 
motorcycle skidded for a distance of 
approximately 80 feet, leaving a single 
skid mark in the approximate center of 
the eastbound travel lane (Photo 1). The 
collision produced significant damage to 
the motorcycle and the automobile, with 
the motorcycle puncturing the right side 
of the vehicle and entering the rear seat 
area of the occupant compartment. The 
BMW rotated in a clockwise direction 
and rolled onto its roof while traveling to 
its final rest position. Near the final rest 
position, the A-pillar and roof line of the 
BMW made contact with the curbing and 
the vehicle came to rest in contact with 
the curb. The Suzuki and its rider 
remained within the BMW and came to 
final rest at the same location as the BMW (Photo 2).  

 
The police documented the 
physical evidence on the 
roadway, including the skid 
mark left by the motorcycle, 
gouge marks near the point of 
impact and the final rest 
positions of the motorcycle 
and the BMW. Using a total 
station survey instrument, 
measurements of the collision 
locus were gathered and a 
scale diagram was created. 
The police measurements 
were placed onto the scale 
diagram and the vehicles 
were placed into their 
estimated impact positions 
(Figure 1). 
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Figure 1 – Scale diagram of Example I 

     

 
 
Figure 2 - Scale Diagram of Example I 1 
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From the scale diagram information we measured the approach and departure angles necessary 
for a momentum calculation (Figure 2). The post-impact distance traveled by the BMW while 
rolling over and sliding on its roof was used to estimate the post-impact speed of the vehicle. 
Since the BMW, Suzuki and the rider traveled to final rest together, the same post-impact speed 
was used for all three.  
 
The following values were used in a momentum calculation for this collision.  
 

Values used for Example I 
V3 20 MPH Speed of BMW after impact θ 75 deg. Departure angle of BMW/Suzuki 

 0 deg. Angle of BMW at impact M1 2800 lbs. Weight of BMW and driver 

ψ 100 deg. Angle of Suzuki at impact M2 755 lbs. Weight of Suzuki and rider 

 
For purposes of this analysis, we can derive specific formulae that evaluate two pre-impact units 
that travel to final rest as one unit. The following formulae are representative of this type of 
trajectory. 
 
The analysis which follows indicates that the motorcycle was traveling at a speed of 
approximately 92 miles per hour when it struck the BMW, which was traveling at a speed of 
approximately 11 miles per hour. These speeds are a good starting point in our analysis and these 
speed estimates will be evaluated later in the uncertainty analysis section of this paper. 
 

Solving for V 2 in Example I 

Step 1 ψ
θ

SinM

SinVMM
V

2

321
2

)( +
=  

Step 2 
)100()755(

)75()20)(7552800(
2 Sin

Sin
V

+
=  

Solution  =2V  92.4 mph 

 
 

Solving for V 1 in Example I 

Step 1 
1

22321
1

)(
M

CosVMCosVMM
V

ψθ −+
=  

Step 2 
2800

)100()4.92)(755()75()20)(3555(
1

CosCos
V

−
=  

Solution  =1V 10.9 mph 
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Photos 3/4 – Final rest positions of car and motorc ycle 
 

 

Example II 
 
This collision occurred 
when the driver of an 
eastbound Ford Probe made 
a left turn across two lanes 
of traffic toward a 
restaurant parking lot 
entrance. The driver of the 
Ford reportedly started to 
make her turn from a 
stopped position and did 
not see the westbound 
Harley Davidson 
motorcycle until she was 
already well into her turn.  
 
The motorcycle collided 
with the right rear wheel 
area of the Ford, ejecting 
the rider and causing 
significant damage to both 
vehicles. The rider, who 
had significant interaction 
with the right C-pillar area 
of the Ford, was thrown for 
an overall distance of 
approximately 81 feet. The 
Ford was rotated a total of 
approximately 145 degrees, 
traveling over a 7-inch 
barrier curb and coming to final rest in the restaurant entrance (Photos 3/4). The motorcycle 
sustained severe front fork deformation and slid on its side to final rest in the roadway.  
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The following values were used to perform a momentum calculation to estimate the speed of 
both involved vehicles. 
 

Values used for Example II 
 0 deg. Approach angle of Ford V3 12 MPH Departure speed of Ford 

ψ 120 deg. Approach angle of motorcycle V4 19 MPH Departure speed of motorcycle 

θ 36 deg. Departure angle of Ford V5 38 MPH Departure speed of rider 

φ 108 deg. Departure angle of motorcycle M1 2770 lbs. Weight of Ford 

γ 115 deg. Departure angle of rider M2 613 lbs. Weight of motorcycle 

   M3 206 lbs. Weight of rider 

 
Using Equation 3 we can first solve for the motorcycle speed. 
 

Solving for V 2 in Example II 

Step 1 ψ
γφθ

SinMM

SinVMSinVMSinVM
V

)( 32

534231
2

+

++
=  

Step 2 
3.709

6.70941107719538
2

++
=V  

Solution  mphV 2.532 =  

 

 
Figure 3 – Scale diagram of Example II 
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Substituting the value of V2 from the above calculation allows us to calculate the value of V1 
with Equation 4. 
 

Solving for V 1 in Example II 

Step 1 θψγφ
CosV

M

CosVMMCosVMCosVM
V 3

1

2325342
1

)(
+

+−+
=  

Step 2 )36()12(
2770

)120()2.53)(206613()115()38)(206()108()19)(613(
1 Cos

CosCosCos
V +

+−+
=  

Step 3 7.9
2770

)4.21785()3.3308()1.3599(
1 +

−−−+−
=V  

Solution  mphV 1.151 =  

 
The calculations indicate that the motorcycle was traveling at a speed of approximately 53 miles 
per hour at the moment it made contact with the Ford, which was traveling at approximately 15 
miles per hour. We will evaluate the confidence level of these speed estimates in the uncertainty 
analysis section. 
 

Speed Estimates from Vehicle Rotation 
 
Many times it is possible to evaluate the rotation of the automobile created by the motorcycle 
impact to estimate the speed of the motorcycle at impact. A large number of motorcycle 
collisions occur when the passenger vehicle crosses the path of the motorcycle while making a 
left turn or while crossing an intersection.5  This creates an angle between the motorcycle and the 
passenger vehicle and many times produces an eccentric impact on the automobile, which will 
tend to rotate the vehicle. 
 
In those collisions where proper documentation of the vehicle rotation has occurred, speed 
calculations based on this rotation can be completed. The accuracy of the calculations, as with all 
reconstruction calculations, is dependent upon the quality of information available to the 
reconstructionist. In modern police investigations, an increasing number of serious collisions are 
being documented with the use of total station survey instruments. This methodology allows for 
much more accurate placement of scene evidence on scale diagrams or collision maps, which are 
typically used by the reconstructionist to measure angles and distances during the analysis.  
 
This section will describe the use of rotational mechanics to evaluate a specific type of impact. 
For a more thorough description of rotational mechanics, we suggest one review Chapter 15 of 
Fundamental of Applied Physics for Traffic Accident Investigators by Daily and 
Shigemura.6  
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The first step in the rotational analysis is to determine the total amount of torque acting through 
the tires/roadway interaction to slow the angular velocity of the vehicle following the collision. 
In many motorcycle/passenger vehicle collisions, the impulse applied to the vehicle results in the 
struck end of the vehicle “sliding,” while the opposite end acts a pivot point. When this type of 
vehicular motion occurs, it is prudent to calculate the torque acting on the vehicle in the 
following manner.  
 

Equation 5 

Explanation  Calculates the amount of torque acting on the vehicle. 

Formula  fWWB atire ⋅⋅=τ  

Where  
τtire  Torque caused by tires 

sliding sideways Wa Weight on axle closest to damage centroid 

WB Wheelbase of vehicle f Coefficient of friction of roadway 

 
The value of torque calculated in Equation 5 can then be used in the following formula, which 
calculates the rotational velocity of the vehicle.  
 

Equation 6 

Explanation  Incorporates the parallel axis method to determine the moment of inertia for the 
vehicle while pivoting on one axle instead of rotating about its center of mass. 

Formula  2
1

2

com

tire

DMI ⋅+

⋅⋅
=

θτω  

Where 

τtire Torque acting through tires M1 Mass of vehicle 

ω Rotational velocity of vehicle in 
radians/second I Yaw moment of inertia of vehicle 

θ Angle of rotation of the vehicle in 
radians Dcom  Distance of the farthest axle from the 

contact to the center of mass 

Note 
One can convert angular displacement in degrees by dividing the number by 
57.3, since 2π radians = 360 degrees. 

 
The variables in Equation 6 include value for moment of inertia for the automobile, which can 
be reasonably estimated by using the methods described by Garrot and by MacInnis, et al.7,8  
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After determining the angular velocity of the vehicle due to the impulse, we can calculate the 
change in velocity experienced by the motorcycle in the event. This is accomplished through the 
following formula. 
 
 

Equation 7 

Explanation  Calculates the change in velocity experienced by the motorcycle in the event. 

Formula  
m

com
m ML

DMI
V

⋅
⋅⋅+=∆ ω)( 2

1  

Where 

∆Vm Change in velocity of motorcycle M1 Mass of vehicle 

ω Angular velocity of vehicle I Yaw moment of inertia of vehicle 

L Length of moment arm (PDOF to 
center of front axle) 

Dcom  Distance of the farthest axle from the 
contact to the center of mass 

 
 
Since the above formula is calculating the change in velocity for the motorcycle in the collision, 
if we know the direction of travel of the motorcycle at impact and its post-impact velocity, we 
can calculate the impact speed of the motorcycle. The following formula can be used to calculate 
the initial speed of the motorcycle. A derivation for Equation 8 can be found in Appendix B. 
 

Figure 4 - Angles of Impact and Rotation 1 
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Equation 8 

Explanation  Calculates the initial speed of the motorcycle. 

Formula  2
4

2
42 ))(()( φψφψ −⋅−∆+−⋅= SinVVCosVV m  

Where 
V2 Initial speed of the motorcycle φ Departure angle of motorcycle 

V4 Post-impact speed of the motorcycle ψ Approach angle of motorcycle 

 
Example III 
 
From Example II of the Linear Momentum section of this paper, we find the following values: 
 

Values used for Example III 

θ 145 deg or 
2.53 rad. 

Angular displacement of 
automobile L 8.5 feet Moment arm 

I 1617.3 
lb/ft/sec2 

Yaw moment of inertia for 
automobile Dcom  3.2 feet Distance from front axle to 

center of mass 

Wt 2770 lbs. Total weight of automobile f .75 g Roadway coefficient of friction 

Wf 1745 lbs. Weight on front axle φ 108 deg. Departure angle for motorcycle 

Wr 1025 lbs. Weight on rear axle ψ 120 deg. Approach angle for motorcycle 

WB 8.6 feet Wheelbase Mm 21.2 slugs Mass of motorcycle 

 
Using the above-described methodology, we can estimate the speed of the motorcycle at the time 
of impact through the rotation experienced by the automobile with which it collided. First, we 
can calculate the amount of torque acting on the vehicle as it rotates to final rest using 
Equation 5. 
 

Solving for τtire  in Example III 

Step 1 fWWB atire ⋅⋅=τ  

Step 2 )75)(.1025)(6.8(=tireτ  

Solution  ftlbtire ⋅= 25.6611τ  

 
Next, we determine the post-impact angular velocity of the vehicle using Equation 6. 
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Solving for Τ in Example III 

Step 1 
2

1

2

com

tire

DMI ⋅+

⋅⋅
=

θτω  

Step 2 
)24.10)(02.86(3.1617

)53.2)(25.6611)(2(

+
=ω  

Solutio
n sec/66.3 rad=ω  

 
 
 

 
Using Equation 7, we can calculate the change in velocity experienced by the motorcycle. It 
should be noted that the mass of the motorcycle includes approximately one-third the mass of the 
rider, since the rider was ejected from the collision with only partial interaction with the vehicle. 
 

 

–  
Figure 5 – Angles of Rotation in Example III  
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Solving for )Vm in Example III 

Step 1 

m

com
m ML

DMI
V

⋅
⋅+=∆ ω)( 2

1
 

Step 2 
)2.21(5.8

66.3)24.1002.863.1617( ⋅+=∆ mV  

Solution  sec/7.50 ftVm =∆  

or mphVm 6.34=∆  

 
The final step in the methodology is to use Equation 8 to estimate the initial speed of the 
motorcycle. 
 

Solving for V 2 in Example III 

Step 1 2
4

2
42 ))(()( φψφψ −−∆+−= SinVVCosVV m  

Step 2 2
2 ))2079)(.19((2.1197)9781)(.19( −+=V  

Solution  mphV 9.522 =  

 
Through the described methodology, we have calculated the speed of the motorcycle to be 
approximately 53 miles per hour. This speed estimate is consistent with that found by performing 
a linear momentum calculation using the same collision data. Because the two methods are 
similar but independent means of calculating the speed of the motorcycle, they complement one 
another when performing a collision analysis of this nature. Although one method alone may be 
used to estimate the speed of a motorcycle involved in a collision, because of the sensitivity of 
the momentum calculations, the application of both methods in conjunction with one another 
reduces the possibility of erroneous results.  
 
There are times, however, that it is not possible to use both methods in conjunction with one 
another. A good example of this is Example I in this paper, where the BMW both rotated and 
rolled following impact. With the given information, one cannot reasonably determine the 
amount of rotation that occurred while the vehicle was airborne, so the above-described 
methodology cannot be used to estimate the resultant angular velocity of the vehicle due to the 
collision. When this is the case, it is especially important to determine the sensitivity of the 
calculations to reasonable changes in values. 
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Uncertainty and Sensitivity  
 
In the examples we included in this paper, we have used the physical evidence available at the 
scene and on the vehicles to estimate the initial speed of the motorcycle. This scene evidence 
was well documented and could be reasonably corroborated by photographs taken of the 
evidence. However, regardless of how carefully distances, angles, drag factors, grades, slopes, 
etc. are measured at a scene, there is always a range of uncertainty to every measurement.9,10 
Approach and departure angles can usually be determined from scene diagrams to within a 
narrow range, but the exact value can never be determined. These combined sources of 
uncertainty affect the level of confidence in our resultant calculations.  
 
To evaluate the uncertainty of an overall analysis, there are several tools available, including 
Monte Carlo analysis, partial differentiation of the equations involved, and a numerical approach 
to the partial differentiation method.  The first two methods are beyond the scope of this article, 
but the curious reader is directed to almost any recent statistical textbook, as well as papers by 
Tubergen and Kost and Werner.11,12  The last method, a numerical approach to the partial 
differentiation, makes use of spreadsheets in an extension of the model outlined by Metz and 
Metz in 1998.13   
 
Finding the absolute maximum and minimum values is a fairly simple, but sometimes tedious 
exercise, since we must perform calculations using the high/low combinations of all variables. 
Given that there are two choices for each variable of a function, the highest and lowest value, 
there will be 2n possible permutations.  If you have two variables (skid to stop has distance and 
drag factor, for instance) there will be (22 = 4) four possible permutations. With three variables 
there are (23 = 8) eight permutations, etc. One can see that with a complex momentum function, 
such as in Equations 3 and 4 where the total number of combinations is (210 = 1024) 1024 
calculations, this process would be extremely time consuming absent a spreadsheet program. 
This process will yield one highest possible value, one lowest possible value, and a number of 
intermediate values that really have no meaning or use in the reconstruction process.   
 
The chance that all the values will combine in just the right way to allow one of these absolute 
highest or lowest values to occur is fleetingly small, so we must narrow the range of probability. 
This is where statistics starts to come into play.  It has been found that any time the same 
quantity is measured repeatedly the results vary, if just a little, from measurement to 
measurement.  As an example, 18 people attending last year’s Special Problems Conference 
were given tape measures and asked to measure the chord and middle ordinate of an arc chalked 
onto the pavement.9 After converting the participants’ chord/middle ordinate values to radius 
values, the data looked like this: 
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(Measuring a chalked constant-radius arc. ( .5.4.,3.182,18 ftsftXn === ) 
 

 

 
Figure 6 – Distribution Graph  
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Assuming the data followed a normal distribution (which is true for many measurements), the 
average value of all results was 182.3 feet, with a standard deviation of 4.5 feet. That means that 
68.3% of all data fell within 4.5 feet of the average value. A normal distribution looks like Figure 
6. The area bounded by one standard deviation around the mean is the darker shaded area, and 
represents about 68% of the total area under the curve.  
 
If we spread our area of interest one more standard deviation, or twice the value of one standard 
deviation, in each direction, we will have shaded 95% of the total area. This is represented by the 
lighter shaded area seen in Figure 6. So getting back to our example, with a mean of 182.3 feet 
and a standard deviation of 4.5 feet, if we had had 100 participants, we would expect 68 of them 
to report a radius of between 177.8 and 186.8 (average plus/minus one sigma). We would expect 
that 95 people would report values between 173.3 and 191.3 feet (average plus/minus two 
sigma). Thus we can be 95% confident that the true value is between 173.3 feet and 191.3 feet. 
 
If we can assign a 95% confidence level to each of the variables in an accident analysis, we can 
evaluate the range of the result to the same confidence level through this procedure:   
 

Step 1 Determine the average (or nominal) and 95% confidence values for each variable. 

Step 2 Calculate the nominal result using all the nominal values.   

Step 3 One at a time, with all other values set at the nominal value, set each variable to its 
highest value and calculate the difference between the new value and the nominal value. 

Step 4 Square these new values and add them together, then take the square root of the sum. 
This process is called a Root-Sum-of-Squares.14 

Step 5 Now repeat the process for all the lowest values. 

Step 6 Take the average of the two resulting values.  This represents the range above and below 
the nominal value within which we can be 95% confident the true value lies.  

 
Example 
 
If you want to calculate the skid to stop distance with perception reaction time included, you can 
use this formula: 
 

Skid-to-Stop Distance with Perception/Reaction Time  

Formula  
gf

v
tvd

⋅⋅
+⋅=

2

2

 

Where 

d Distance (feet) t Perception/Response time (sec) 

g Gravity (ft/sec/sec) f Effective drag factor (g’s) 

v Initial velocity (ft/sec)  
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Using these inputs and 95% confidence intervals: 
 
v = 45 ± 8 ft/sec (one sigma=4 ft/sec) 
f = 0.75 ± 0.12 g’s (one sigma = 0.06 g’s) 
t = 1.5 ± 0.4 sec (one sigma = 0.2 sec) 
 
We can run through the 8 permutations of high/low values to find the absolute highest and 
absolute lowest value values to be 65 to 170 feet. The chances of getting all three variables lined 
up to allow one of these values to happen is very slim indeed. To narrow the range, we first find 
the nominal value: 
 

Solving for the nominal value 

Formula  109
)2.32)(75.0)(2(

45
)5.1)(45(

2

=+=nomd  

 
Then cycle each value to the high end of its range, and find the difference from the nominal 
value: 
 

Solving for the high end values 

 7.28
)2.32)(75.0)(2(

53
)5.1)(53(

2

1 =−



 += nomdiff dHI  

 4.5
)2.32)(87.0)(2(

45
)5.1)(45(

2

2 −=−



 += nomdiff dHI  

 4.18
)2.32)(75.0)(2(

45
)9.1)(45(

2

3 =−



 += nomdiff dHI  

Take the square 
root of the sum 
of the squares  

5.34)4.18()4.5()7.28( 222 =+−+=diffHI  
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Solving for the low end values 

 2.25
)2.32)(75.0)(2(

37
)5.1(37(

2

1 −=−



 += nomdiff dLO  

 4.8
)2.32)(63.0)(2(

45
)5.1)(45(

2

2 =−



 += nomdiff dLO  

 6.17
)2.32)(75)(.2(

45
)1.1)(45(

2

3 −=−



 += nomdiff dLO  

Take the square 
root of the sum 
of the squares  

3.32)4.624.17()5.19()26( 222 =−+−+−=diffLO  

 
By taking the average LOdiff and HIdiff values, we find the 95% confidence range to be ± 33.2 
feet. So, with 95% confidence we can say that given the starting values and ranges, the vehicle 
could have stopped in 109 ± 33 feet, or 76 to 142 feet.  
 
Clearly, if we can narrow the ranges for the inputs, we will narrow the result range as well. If we 
are willing to live with the range that’s only 68% likely (one standard deviation), then we can 
simply take half of the range found to be 95% likely. Using the previous example, we can say 
with 68% confidence that the vehicle could have stopped in 109 ± 16.6 feet, or about 92 to 126 
feet. It is worth noting that both of these ranges are narrower than the absolute high and low of 
65 to 170 feet found using our original 95% confidence limits. This is why evaluating the 
uncertainty can help us narrow the range of our final answers. 
  
A separate but also important concept in any accident reconstruction is that of sensitivity. Rather 
than describing how tight a range the final answer can be reported, sensitivity analysis gives a 
means of evaluating how important each variable in the analysis is to the final answer. For 
example, if while measuring a critical speed yaw the chord is reported to be 50 feet, while the 
middle ordinate is reported to be 20 inches (yielding a nominal radius of 188.3 feet), a variation 
of 1 foot in the chord value changes the calculated radius by 7.4 feet, while changing the middle 
ordinate by one foot changes the calculated radius by 280.8 feet. Clearly this analysis is much 
more sensitive to the middle ordinate measurement. 
 
As one goes through the earlier noted steps to conduct a numerical uncertainty analysis, each 
step provided us with the chance to see how much changing each variable changed the outcome. 
The distance to stop calculation was clearly least sensitive to the initial speed of the vehicle and 
most sensitive to the reaction time of the driver.  Knowing which parameters have the greatest 
affect on the outcome can assist us in determining where to spend our energy to make 
particularly careful measurements. For instance, getting the middle ordinate right is a LOT more 
important than getting the chord right. 
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Photo 5 – Damage to motorcycle handlebars and tank due 

to rider interaction. 

 
By using a spreadsheet to evaluate the linear and rotational momentum calculations, one may 
easily evaluate the potential sensitivity of speed estimates by changing the values of a single 
variable or combinations of changes to several variables. If, for example, one is reasonably sure 
that the angle of approach for the motorcycle is within ± 3 degrees, one can perform calculations 
at the limits of that range to evaluate the sensitivity of the approach angle to the resultant speed 
calculation. The same can be performed with the reasonable ranges of all of the variables that are 
contained within the particular formula used to estimate the speed of the motorcycle. 
 
We encourage the investigator to adapt these described methods to fit the circumstances of the 
particular collision they are evaluating. For examples of the methods of uncertainty analysis 
described in this section performed on the previously described examples in Conservation of 
Linear Momentum and Speed Estimates from Vehicle Rotation sections of this paper, please 
refer to Appendix C, D and E.  These examples are in a spreadsheet format, which displays the 
appropriate high and low calculation values for each of the variables and the 68% and 95% 
confidence ranges.    
 

Other Methods of Estimating Speed 
 
Searle’s Method  
 
A popular method used in the accident reconstruction community in motorcycle collision 
analysis is to estimate the speed of the motorcycle at the moment of impact by evaluating the 
total distance the rider was thrown from the point of impact to point of final rest. Searle 
developed the most commonly 
used formula in this type of 
analysis, which he described in 
his 1983 and 1993 papers.15,16 
Unfortunately, there is 
significant misapplication and 
misunderstanding of the Searle 
method, even though the 
technical papers he presented 
on the subject are reasonably 
clear. 
 
Although the Searle method 
purports to estimate the speed 
of the motorcycle at the 
moment of impact, what it is 
actually accomplishing is 
something slightly different. 
The formula is calculating the speed of the rider following his separation from both the 
motorcycle and the struck vehicle. In nearly every motorcycle collision where the rider is vaulted 
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from the motorcycle, there is evidence of interaction between the rider, the motorcycle and the 
struck vehicle. Since this interaction is never addressed by the Searle formula, any resultant 
speed calculation using this formula must be a conservative value. 
 
Searle warned users of his formula of the problem of rider/vehicle interaction in his technical 
paper, however, he does not adequately forewarn of the potential underprediction of actual 
motorcycle speed in nearly all angular impacts between motorcycles and automobiles. In 
Example II, we calculated the speed of the motorcycle to be approximately 38 miles per hour 
using the Searle formula for the overall throw distance of the rider. Using both rotational and 
linear momentum methods in this example, we find that the probable speed of the motorcycle 
was approximately 53 miles per hour. The difference between the speed estimates is, in our 
opinion, due solely to interaction between the motorcycle rider, the motorcycle and the struck 
vehicle. There was evidence on the motorcycle that the rider contacted the tank with his legs and 
folded the handlebars forward at impact (Photo 5). There was also damage to the upper C-pillar 
of the Ford due to interaction with the rider. This type of interaction would cause the rider to lose 
enough of his kinetic energy to account for the disparity in speed estimates.   
 
Although the Searle method is a valid methodology to estimate motorcycle speeds, it will only 
reasonably estimate the speed of the motorcycle in limited circumstances. At times there will be 
so limited an amount of information available to the investigator that the only method available 
to perform a speed estimate is the Searle method. The investigator should thoroughly understand 
that the results of the speed analysis in these circumstances are most likely conservative 
estimates of speed for the motorcycle.  
 
Speed from Motorcycle Fork Deformation 
 
Another method of estimating motorcycle impact speed is to compare the amount of front fork 
deformation to that seen in crash tests of motorcycles. Speed estimates from front fork 
deformation originated with the work of Severy in 1970.17 In this paper, Severy reported the 
amount of front fork deformation that resulted in crash tests performed with motorcycles.  
 
These motorcycles were almost all of relatively small size and mass when compared to more 
modern motorcycles, and because of the significant changes in the design of motorcycles since 
Severy’s crash tests, the use of this data on modern crash reconstructions is questionable. 
However, there are other sources of data on fork deformation that are more current and, 
therefore, more applicable to modern motorcycle collisions.18,19,20  These more modern tests may 
be helpful in reasonably estimating the rate at which the front forks of newer motorcycles 
deform. 
 
One obvious limitation to this methodology is the lack of specific data on a large variety of 
motorcycles. When performing a crush analysis on a vehicular crash, one can generally locate 
frontal crush data on nearly all production automobiles by checking the NHTSA database. There 
is no similar database for motorcycles, and the investigator is typically forced to compare front 
fork deformation to similar-sized motorcycles.  
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Another limitation to this methodology is that the front forks on motorcycles have a limited 
possible range of rearward deflection. After the front forks have been displaced rearward so that 
there is significant contact with the engine and frame of the motorcycle, the rate of deformation 
changes drastically because of the stiffer structures of the frame and engine being loaded. Under 
these conditions, an accurate estimate of the speed change of the motorcycle is not possible. It is 
only possible under these circumstances to estimate the minimum change in velocity experienced 
by the motorcycle. With more modern motorcycles, many of which are equipped with aluminum 
wheels, a fracture of the front wheel may occur if it strikes a hard spot on the other vehicle, 
making it difficult to estimate the energy absorbed by the motorcycle in the impact. 
 
Provided there is adequate information available on the motorcycle, and the previously discussed 
limitations have not been exceeded, estimating speed change from front fork deflection is a 
potential tool for the accident reconstructionist. This method is most useful when the impact 
speed is relatively low, since the front forks of the motorcycle will typically be forced rearward 
into the frame and engine at speeds of more than about 35 miles per hour.  
 

Discussion 
 
The two examples we used for this paper both involve a motorcycle that weighs significantly less 
than the vehicle with which it collided, but was traveling much faster than the automobile at the 
moment of impact. By using a sensitivity analysis on hypothetical collisions involving vehicles 
of various weight disparity and impact speeds, one can start to understand why the historical 
literature on this subject sometimes discouraged the use of linear momentum to determine the 
speed of a motorcycle. These treatises almost always give examples of a motorcycle colliding 
with a vehicle that weighs much more than the motorcycle and the resultant automobile motion 
is relatively minor. 
 
In these circumstances, one can understand that momentum techniques are probably not 
appropriate, since even small changes in the input variables will produce large changes in the 
calculated speed of the motorcycle. For example, a motorcycle that weighs 450 pounds, with a 
rider that weighs 175 pounds, strikes the side of a stationary sport-utility vehicle that weighs 
4,200 pounds. The impact causes the center of mass of the vehicle to move sideways a distance 
of approximately 1 foot on a roadway surface with a measured coefficient of friction of 
approximately .75. Using a simple minimum speed formula, we find that the post-impact speed 
of the sport-utility vehicle was approximately 4.7 miles per hour.  
 
Since the motorcycle collided with the side of the other vehicle, the high profile of the sport-
utility vehicle produced a barrier that essentially prevented the motorcyclist from being thrown 
free. For calculation purposes we will assume that the motorcycle, the rider and the sport utility 
vehicle all attained a common post-impact velocity. Since the motorcycle and rider were 
providing all of the pre-impact momentum, we can use the following formula to estimate the 
speed of the motorcycle at the moment of impact. 
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Equation 9 

Explanation  Calculates the initial speed of the motorcycle.  

Formula  21 )()( VMMMVMM rmvehrm ⋅++=⋅+  
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= 2

1
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Where 
V1 Initial speed of the motorcycle Mm Mass of motorcycle 

V2 Post-impact speed of the motorcycle/vehicle Mr Mass of rider 

 Mveh Mass of vehicle 

 

Solving for V 1 using Equation 9 

Step 1 
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Step 2 
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Step 3 
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5.22677
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Solution  mphV 3.361 =  

 
Using a single variable sensitivity analysis on only the post-impact distance used to calculate the 
post-impact speed of the involved vehicles, we find that the probable range of post-impact speed 
for the sport utility vehicle ranges from approximately 3.4 to 5.8 miles per hour, with a one-half 
foot difference in displacement distance of the vehicle. When we substitute this range of post-
impact speeds back into Equation 9, we see that the resultant impact speed changes from 26.2 
miles per hour to 44.8 miles per hour. The wide range of speeds found by making such a small 
change in the post-impact distance alone indicates the potential for error is too great for a 
reasonable conclusion to be reached. When one performs an uncertainty analysis with the 
probable ranges of the other variables of the calculation in this same example, we find that the 
resultant speed estimates are virtually useless. 
 
The appropriateness of the methodologies discussed in this paper is dependent on the objectives 
of the collision analysis and individual factors of the collision itself. One should not make a 
blanket statement that momentum should not be used in motorcycle collision analysis because of 
potential errors in the speed estimates when there are numerous circumstances where these 
calculations prove to be extremely useful to the investigator. As with any tool in the accident 
reconstructionist’s toolbox, momentum should be used where it can be shown to be appropriate, 
but cannot be used in all circumstances.  
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Through the use of complementary methodologies, such as using both linear and rotational 
momentum on a collision, the investigator can travel different paths to arrive at the same 
destination. The use of multiple methodologies in motorcycle speed estimates and further 
evaluation of each of the methodologies with a sensitivity analysis will determine if the 
individual methods are suitable for the particular collision. 
 
Summary and Conclusions 
 
Historical publications by various authors have offered conflicting views on the appropriateness 
of conservation of linear momentum calculations in motorcycle collision analysis. While these 
works have appropriately warned of the potential limitations involved with these types of 
calculations, some simply dismiss the techniques without adequate explanation of when it should 
be dismissed and when it might be useful. The applicability of the momentum techniques 
discussed in this paper has been demonstrated to be appropriate under certain circumstances in 
motorcycle collision analysis. By properly evaluating the results of the momentum analysis with 
a sensitivity analysis, the reconstructionist can evaluate the applicability of these techniques to 
each individual collision. 
 
As with all of the techniques available to the reconstructionist, there is no one single technique or 
methodology that can be applied in all circumstances. The proper use of linear and angular 
momentum techniques, as described in this paper, gives the reconstructionist other tools with 
which to evaluate motorcycle vs. automobile collisions.  
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Appendix A 
 
The Rotational Analysis section of this paper explains the methodology used if the struck 
vehicle slides sideways instead of rotating about its center of mass. In very high speed collisions, 
the struck vehicle may rotate about its center of mass. In these circumstances the following 
analysis allows the investigator to estimate the impact speed for the motorcycle. 
 
The first step is to determine the torque acting to slow vehicle’s rotation as it travels to final rest. 
This can be accomplished through the following formula if we assume that the rotation of the 
vehicle is about its center of mass. 
 

Equation A 

Formula  



 ⋅⋅⋅⋅=

t

rf
tire W

WW
fWB2τ  

Where  

Wf Weight on the front axle 

Wr Weight on the rear axle 

Wt Total weight of vehicle 

f Coefficient of friction 

WB Wheelbase of vehicle 

 
The second step in the rotational analysis is to determine the angular velocity of the automobile 
after impact. This is accomplished through the Work-Energy Theorem in the following manner: 
 

Equation B 

Formula  2

2

1 ωθτ Ι=tire  

Where  

τtire  Torque from sliding tires 

θ Angular displacement in radians 

ω Angular velocity in radians/second 

I Yaw moment of inertia in lb-ft-sec2 

 

By solving Equation B for ω, we find the following to be true: 
 

Equation C 

Formula  
Ι
⋅⋅= θτω tire2
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The next step in the analysis is to determine the amount of torque applied to the automobile 
during the collision to produce the calculated angular velocity. This is accomplished through 
Newton’s Second Law for Rotation, where the following is true: 
 

Equation D 

Formula  ( )ofimp t ωωτ −Ι=∆  

Where 

τimp Torque from impact 

ωf Angular velocity of vehicle post-impact 

ωo Angular velocity of vehicle pre-impact 

∆t Duration of collision impulse in seconds 

 
or 
 

Equation E 

Formula  
( )

t
of

imp ∆
−Ι

=
ωω

τ  

 
By using Equation E and assuming a time over which the collision impulse occurred, typically 
found to be within the range of .10 to .14 seconds, we can calculate the amount of torque acting 
to cause the vehicle to rotate.14  Using the calculated range of torque acting on the vehicle to 
produce the rotation, we can determine the amount of force acting on the vehicle by dividing the 
torque by the length of the moment arm. The length of moment arm is determined by measuring 
the perpendicular distance from the principal direction of force (PDOF) to the center of mass of 
the vehicle.   
 

Equation F 

Formula  
L

F impτ
=  

Where L Length of moment arm 

 
The next step in the rotational analysis is to determine the translational change in velocity 
experienced by the motorcycle as a result of the collision. Through Newton’s Third Law of 
Motion, we know that the force acting on the automobile calculated in Equation (10) is the same 
magnitude as the force acting on the motorcycle. Using the Impulse = Momentum relationship, 
we can calculate the change in velocity experienced by the motorcycle in the following manner: 
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Equation G 

Formula  VMtF ∆=∆  

 
or 
 

Equation H 

Formula  
m

m M

tF
V

∆=∆  

 
This entire process can be combined into a single formula, which is derived by combining 
Equations E, F, and H to arrive at the following: 
 

Equation I 

Formula  
m

m ML

I
V

⋅
⋅=∆ ω

 

 
As one can see, Equation I gives a solution for the change in velocity experienced by the 
motorcycle using the variables for moment of inertia of the vehicle, the angular velocity of the 
vehicle, the length of the moment arm and the mass of the motorcycle. By using this single 
equation, we eliminate the need to estimate the time duration of the collision impulse and 
significantly simplify the methodology. 
 
The initial speed of the motorcycle can then be estimated by using Equation 8, found in the 
Rotational Analysis section and derived in Appendix B. 



 30

Appendix B 
 

 
From Figure 7, we can see that V2 = V2a+V2b. By breaking the vector diagram into two right 
triangles with h, we can solve for V2 in the following manner. 
 

Solving for V 2  

Step 1 22
2 hVV mb −∆=  

Step 2 )(4 φψ −⋅= SinVh  

Step 3 2
4

2
2 ))(( φψ −⋅−∆= SinVVV mb  

Step 4 )(42 φψ −⋅= CosVV a  

Solution  2
4

2
42 ))(()( φψφψ −⋅−∆+−⋅= SinVVCosVV m  

 

 

 
 

Figure 7 – Vector Diagram 
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Appendix C 

 Sensitivity Analysis 1   Numbers in bold are calculated. All other numbers are variables.

Weight of
Car and Driver

(lbs)

Weight of
MC and Rider

(lbs)

Speed of Car
After Impact

(mph)

Departure Angle
of Car and MC

(deg)

Approach Angle
of Motorcycle

(deg)

V2

(mph)
V1

(mph)

Est 2800.00 755.00 20.00 75.00 100.00 92.37 10.90
Min 2700.00 735.00 18.00 72.00 97.00
Max 2900.00 780.00 22.00 78.00 103.00

95% Confidence 9.96 2.11
68% Confidence 4.98 1.06

High Value 101.60 12.23
Low Value 83.13 9.58

2700.00 755.00 20.00 75.00 100.00 89.77 10.98
2800.00 780.00 20.00 75.00 100.00 90.03 10.97
2800.00 755.00 22.00 75.00 100.00 101.60 11.99
2800.00 755.00 20.00 78.00 100.00 93.54 9.66
2800.00 755.00 20.00 75.00 103.00 93.36 12.23
2900.00 755.00 20.00 75.00 100.00 94.96 10.82
2800.00 735.00 20.00 75.00 100.00 94.35 10.84
2800.00 755.00 18.00 75.00 100.00 83.13 9.81
2800.00 755.00 20.00 72.00 100.00 90.94 12.11
2800.00 755.00 20.00 75.00 97.00 91.65 9.58

Min value used Max value used Est value used

Values used below
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Appendix D 

Vehicle 
Depart. 
Speed
(mph)

MC Depart. 
Speed
(mph)

Rider 
Depart. 
Speed
(mph)

MC 
Approach 

Angle
(deg)

Vehicle 
Depart. 
Angle
(deg)

MC Depart. 
Angle
(deg)

Rider 
Depart. 
Angle
(deg)

Vehicle 
Weight

(lbs)

MC Weight
(lbs)

Rider Weight
(lbs)

V2

(mph)
V1

(mph)

Est 12.00 19.00 38.00 120.00 36.00 108.00 115.00 2770 618 190 53.23 15.06
Min 10.50 17.00 35.00 117.00 33.00 105.00 112.00 2700 600 180

Max 13.50 21.00 41.00 123.00 39.00 111.00 118.00 2840 640 200

4.85 1.99
2.42 1.00
56.72 16.78
49.74 13.34

13.50 19.00 38.00 120.00 36.00 108.00 115.00 2770 618 190 56.72 16.78
12.00 21.00 38.00 120.00 36.00 108.00 115.00 2770 618 190 54.91 15.17
12.00 19.00 41.00 120.00 36.00 108.00 115.00 2770 618 190 53.97 15.08
12.00 19.00 38.00 123.00 36.00 108.00 115.00 2770 618 190 54.97 16.03
12.00 19.00 38.00 120.00 39.00 108.00 115.00 2770 618 190 55.20 14.97
12.00 19.00 38.00 120.00 36.00 111.00 115.00 2770 618 190 52.94 14.81
12.00 19.00 38.00 120.00 36.00 108.00 118.00 2770 618 190 52.99 14.90
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2840 618 190 53.94 15.03
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2770 640 190 52.37 15.10
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2770 618 200 53.07 15.07
10.50 19.00 38.00 120.00 36.00 108.00 115.00 2770 618 190 49.74 13.34
12.00 17.00 38.00 120.00 36.00 108.00 115.00 2770 618 190 51.55 14.95
12.00 19.00 35.00 120.00 36.00 108.00 115.00 2770 618 190 52.49 15.04
12.00 19.00 38.00 117.00 36.00 108.00 115.00 2770 618 190 51.74 14.15
12.00 19.00 38.00 120.00 33.00 108.00 115.00 2770 618 190 51.18 15.12
12.00 19.00 38.00 120.00 36.00 105.00 115.00 2770 618 190 53.48 15.31
12.00 19.00 38.00 120.00 36.00 108.00 112.00 2770 618 190 53.45 15.22
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2700 618 190 52.53 15.09
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2770 600 190 53.97 15.03
12.00 19.00 38.00 120.00 36.00 108.00 115.00 2770 618 180 53.40 15.05

Low Value

High Value

 Sensitivity Analysis 2   Numbers in bold are calculated. All other numbers are variables.

95% Confidence

68% Confidence

Min value used

Values used below

Est value usedMax value used



33 

 
Appendix E 
 

Wheelbase
V1

(feet)

Weight on 
axle closest 
to impact

(lbs)

Friction
(f)

Angle of 
Rotation

(degrees)

Moment of 
Inertia

Weight of 
vehicle

(lbs)

Weight of
Motorcycle

(lbs)

Length of
Moment Arm

(feet)

Change in 
Angle of 

Motorcycle
(degrees)

Post-impact 
speed of 

Motorcycle
(MPH)

Torque - 
Tire

(lb-ft)

Angular 
Velocity
(rad/sec)

Change 
in 

Velocity 
(fps)

Change 
In

Velocity
(mph)

Impact 
Speed of 

MC
(mph)

Est 8.6 1025 0.75 145 1617.3 2770 683 8.5 12 19 6611.25 3.67 50.61 34.52 52.88
Min 8.5 1000 0.7 142 1540 2700 620 8 9 17

Max 8.7 1050 0.8 148 1700 2840 808 9.00 15.00 21

475.58 0.14 7.54 5.14 5.53
237.79 0.07 3.77 2.57 2.77
7052.00 3.79 55.76 38.03 56.41
6170.50 3.54 42.78 29.18 47.50

8.70 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 19 6688.13 3.67 51.11 34.87 53.23
8.60 1050.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 19 6772.50 3.68 51.67 35.24 53.61
8.60 1025.00 0.80 145.00 1617.30 2770.00 683.00 8.5 12 19 7052.00 3.79 52.27 35.66 54.02
8.60 1025.00 0.75 148.00 1617.30 2770.00 683.00 8.5 12 19 6611.25 3.70 51.13 34.88 53.24
8.60 1025.00 0.75 145.00 1700.00 2770.00 683.00 8.5 12 19 6611.25 3.61 51.45 35.09 53.46
8.60 1025.00 0.75 145.00 1617.30 2840.00 683.00 8.5 12 19 6611.25 3.68 50.39 34.38 52.73
8.60 1025.00 0.75 145.00 1617.30 2770.00 808.00 8.5 12 19 6611.25 3.67 42.78 29.18 47.50
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 9 12 19 6611.25 3.67 47.80 32.61 50.95
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 15 19 6611.25 3.67 50.61 34.52 52.53
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 21 6611.25 3.67 50.61 34.52 54.79
8.50 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 19 6534.38 3.66 50.11 34.18 52.54
8.60 1000.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 19 6450.00 3.65 49.57 33.81 52.17
8.60 1025.00 0.70 145.00 1617.30 2770.00 683.00 8.5 12 19 6170.50 3.54 48.90 33.35 51.70
8.60 1025.00 0.75 142.00 1617.30 2770.00 683.00 8.5 12 19 6611.25 3.63 50.09 34.17 52.52
8.60 1025.00 0.75 145.00 1540.00 2770.00 683.00 8.5 12 19 6611.25 3.73 49.82 33.98 52.34
8.60 1025.00 0.75 145.00 1617.30 2700.00 683.00 8.5 12 19 6611.25 3.65 50.84 34.68 53.04
8.60 1025.00 0.75 145.00 1617.30 2770.00 620.00 8.5 12 19 6611.25 3.67 55.76 38.03 56.41
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 8 12 19 6611.25 3.67 53.78 36.68 55.05
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 9 19 6611.25 3.67 50.61 34.52 53.16
8.60 1025.00 0.75 145.00 1617.30 2770.00 683.00 8.5 12 17 6611.25 3.67 50.61 34.52 50.97

 Sensitivity Analysis 3   Numbers in bold are calculated. All other numbers are variables.

Values used below
95% Confidence

68% Confidence

Min value used Max value used Est value used
High Value

Low Value


